IesusDev

Navigation

Future Navigation

Use WASD to rotate the ship and arrow keys to move it. Configure parameters and start simulation.

Configuration

Current Information

ttTime:
0.00 s
Sphere Position:
X:0.0 Y:0.0 Z:0.0
Ship Position:
X:0.0 Y:0.0 Z:0.0
EkE_kKinetic Energy:
200.00 J
EpE_pPotential Energy:
0.00 J
EtE_tTotal Energy:
200.00 J

Absolute Info

ymaxy_{max}Max Height:
10.2m
Max Pos:
X:20.4 Z:0.0
tmaxt_{max}Time Max H:
1.44s
Final Pos:
X:40.8 Z:0.0
tfloort_{floor}Time Final:
2.88s
Ek0E_{k0}Init Kinetic:
200.0J
Ep0E_{p0}Init Potential:
0.0J

Controles de Nave

Rotación

Movimiento

W/S: Inclinar

A/D: Balanceo

↑/↓: Adelante/Atrás

←/→: Girar

Time Calculator

s
0 s2.88 s

Values at time tt = 0.00 s

xx0.00 m
yy0.00 m
zz0.00 m
vxv_x14.14 m/s
vyv_y14.14 m/s
vzv_z0.00 m/s
vv20.00 m/s
EkE_k200.00 J
EpE_p0.00 J
EtE_t200.00 J

Physics Formulas

Basic Motion

Initial Velocity

v0x=v0cos(φ)cos(θ)v_{0x} = v_{0} \cdot \cos(\varphi) \cdot \cos(\theta)
v0y=v0sin(φ)v_{0y} = v_{0} \cdot \sin(\varphi)
v0z=v0cos(φ)sin(θ)v_{0z} = v_{0} \cdot \cos(\varphi) \cdot \sin(\theta)

Position

x(t)=x0+v0xtx(t) = x_0 + v_{0x} \cdot t
y(t)=y0+v0yt12gt2y(t) = y_0 + v_{0y} \cdot t - \frac{1}{2} g t^2
z(t)=z0+v0ztz(t) = z_0 + v_{0z} \cdot t

Velocity

vx(t)=v0xv_{x}(t) = v_{0x}
vy(t)=v0ygtv_{y}(t) = v_{0y} - g \cdot t
vz(t)=v0zv_{z}(t) = v_{0z}

Maximum Height

Peak Values

ymax=y0+v0y22gy_{max} = y_0 + \frac{v_{0y}^2}{2g}
tmax=v0ygt_{max} = \frac{v_{0y}}{g}
xmax=x0+v0xtmaxx_{max} = x_0 + v_{0x} \cdot t_{max}
zmax=z0+v0ztmaxz_{max} = z_0 + v_{0z} \cdot t_{max}

Peak Velocities

vx(tmax)=v0xv_{x}(t_{max}) = v_{0x}
vy(tmax)=0v_{y}(t_{max}) = 0
vz(tmax)=v0zv_{z}(t_{max}) = v_{0z}
v(tmax)=v0x2+v0z2v(t_{max}) = \sqrt{v_{0x}^2 + v_{0z}^2}

Energy & Impact

Energy

Ek=12mv2E_k = \frac{1}{2} m v^2
Ep=mgyE_p = m g y
Et=Ek+EpE_t = E_k + E_p

Final Position

tfloor=v0y+v0y2+2gy0gt_{floor} = \frac{v_{0y} + \sqrt{v_{0y}^2 + 2gy_0}}{g}
xfinal=x0+v0xtfloorx_{final} = x_0 + v_{0x} \cdot t_{floor}
zfinal=z0+v0ztfloorz_{final} = z_0 + v_{0z} \cdot t_{floor}
yfinal=0y_{final} = 0

Final Velocities

vx(tfloor)=v0xv_{x}(t_{floor}) = v_{0x}
vy(tfloor)=v0ygtfloorv_{y}(t_{floor}) = v_{0y} - g \cdot t_{floor}
vz(tfloor)=v0zv_{z}(t_{floor}) = v_{0z}

Variables Legend

v₀ - Initial velocity
φ, θ - Angles
g - Gravity
t - Time
Eₖ - Kinetic energy
Eₚ - Potential energy
Eₜ - Total energy
m - Mass